Одной из важных характеристик современного автомобиля, является его аэродинамика. Если сказать точнее, коэффициент аэродинамического сопротивления автомобиля. Этот показатель влияет на динамические характеристики и экономичность машины. Вот о том, что же такое аэродинамика автомобиля, как она влияет на его скорость и экономичность, мы и поговорим в этой статье.
Аэродинамические параметры
Основные параметры, т.е. силы моменты и коэффициенты, относящиеся к аэродинамическим характеристикам автомобиля приведены в табл «Аэродинамические силы и моменты».
Аэродинамическое сопротивление
Коэффициент аэродинамического сопротивления cw описывает аэродинамическое поведение кузова автомобиля в воздушном потоке. Умножая cw на динамическое давление воздушного потока:
q = 0,5 ρ v2
и на площадь поперечного сечения автомобиля Afx получаем аэродинамическое сопротивление W. В отличие от важного значения W момент L относительно оси х не столь важен.
Подъемная сила
Вследствие криволинейной формы крыши автомобиля скорость воздушного потока, обтекающего эту поверхность, выше скорости потока в области днища. Это приводит к возникновению нежелательных подъемных сил, снижающих силы сцепления колес с дорогой и, следовательно, курсовую устойчивость автомобиля.
Коэффициент подъемной силы сА равен сумме коэффициентов подъемной силы передней оси cAV и задней оси сАн. Разность между коэффициентами подъемной силы передней и задней осей называется «балансом подъемных сил» и является переменной, влияющей на курсовую устойчивость.
Вместо подъемной силы в конструировании часто используется момент продольной качки M, действующий относительно оси у. Положительный момент продольной качки требует недостаточной поворачиваемости, а отрицательный- избыточной поворачиваемости автомобиля.
Боковая сила
При взгляде спереди автомобиль имеет практически симметричную форму. Это означает, что боковые силы, генерируемые воздушными потоками, невелики. Когда направление обтекающего кузов воздушного потока не совпадает с осью х (например, при боковом ветре), воздушный поток генерирует поперечные силы, которые могут оказывать значительное влияние на поведение автомобиля.
В качестве показателя влияния бокового ветра также используется момент рыскания N, действующий относительно оси z. Это значение берется, чтобы получить скорость изменения угла рыскания и углового ускорения рыскания, которые являются показателями силы бокового ветра.
Автомобильные аэродинамические трубы
Автомобильные аэродинамические трубы используются для как можно более реалистичного и воспроизводимого моделирования воздушного потока, воздействующего на автомобиль во время движения по дороге. Однако, по своей природе реальные условия движения весьма изменчивы. Так, направление и сила ветра постоянно изменяются вследствие таких факторов, как естественные изменения, застройка и дорожное движение.
Преимущества использования аэродинамических труб в качестве инструмента экспериментальных разработок, по сравнению с дорожными испытаниями, заключаются в воссоздании условий испытаний, сравнительно несложной, надежной и быстродействующей технике измерений и возможности изолировать те или иные эффекты, которые в реальных условиях изолированно не возникают (например, шум во время движения). В аэродинамической трубе конструкторские прототипы, которые не могут быть выпущены на дорогу, могут быть оптимизированы с точки зрения аэродинамики с гарантированной секретностью.
Типы аэродинамических труб
При помощи аэродинамических труб определяются аэродинамические параметры автомобиля. Трубы различаются по способу направления воздушного потока, конструкции испытательной секции и способу моделирования дорожной поверхности (см. табл. «Автомобильные аэродинамические трубы в германии» ).
Замкнутые аэродинамические трубы с закрытой рабочей частью называются «Геттингенскими трубами», а системы с возвратом потока — «трубами Эйфеля» (рис. «Конструкция аэродинамических труб» ).
Стандартное оборудование аэродинамических труб
Испытательная секция может быть открытого типа, закрытого типа или с перфорированными стенками. Она характеризуется сечением на выходе диффузора, сечением коллектора и длиной (см. табл. Автомобильные аэродинамические трубы в германии).
Также важным параметром является коэффициент препятствия ФN = Аfx/АN . Это отношение площади поперечного сечения автомобиля Afx к поперечному сечению диффузора АN. На дороге это отношение ФN = 0, поэтому в аэродинамической трубе оно должно быть как можно меньше. С учетом конструкции и эксплуатационных затрат обычным значением на практике является ФN = 0,1. Это соответствует поперечному сечению диффузора приблизительно 20 м2.
Скорость и стабильность воздушного потока в аэродинамической трубе определяются сужением и формой диффузора. Большое значение коэффициента поджатия к, представляющего отношение площадей сечений форкамеры и выпускной части диффузора (к = Аv/АD), дает равномерное распределение скорости, низкую турбулентность и высокое значение ускорения воздушного потока.
Контур диффузора может влиять на стабильность профиля скорости потока на выходе диффузора в испытательной секции и параллельность потока геометрической оси трубы.
Форкамера
Форкамера располагается перед диффузором, в области наибольшего сечения аэродинамической трубы. Форкамера содержит выпрямители потока, фильтры и теплообменники, служащие для повышения качества воздушного потока в отношении стабильности и направления и поддержания постоянной температуры в канале.
Для исследования аэродинамики автомобилей в основном используются Геттинские аэродинамические трубы с открытыми испытательными секциями или с перфорированными стенками.
Вентиляторы
Большинство аэродинамических труб могут создавать воздушные потоки со скоростью далеко за 200 км/ч. Однако такие скорости используются редко, например, для испытаний функциональной безопасности компонентов кузова и их стойкости к ветровым нагрузкам. Это связано с тем, что такие испытания требуют полной мощности вентилятора до 5000 кВт.
Обычно измерения выполняются при скорости воздушного потока 140 км/ч. При такой скорости аэродинамические коэффициенты могут быть определены достоверно и с низкими затратами. Скорость воздушного потока регулируется путем изменения скорости вращения вентилятора или положения лопастей вентилятора при постоянной скорости вращения (см. табл. «Вентиляторы аэродинамических труб» ).
Динамометр аэродинамической трубы
Динамометр аэродинамической трубы служит для регистрации аэродинамических сил, воздействующих на испытуемый автомобиль, и моментов относительно всех точек контакта шин с поверхностью, которые используются для вычисления аэродинамических параметров, действующих в направлении осей х, у и z.
Динамометр аэродинамической трубы обычно расположен под поворотной платформой, служащей для поворота автомобиля относительно направления воздушного потока, т. е. для моделирования таким образом бокового ветра.
В отличие от реальной ситуации, автомобиль в аэродинамической трубе неподвижен и обтекается воздушным потоком. Поэтому влияние перемещения автомобиля относительно дороги не может быть учтено. Однако в последнее время было сооружено несколько аэродинамических труб, на которых в пол встроены движущиеся ленты, служащие для моделирования движения автомобиля по дороге и вращения колес (см. рис. «Поворотная платформа на полу аэродинамической трубы с встроенной движущейся лентой» ). Это позволяет повысить качество прохождения воздушного потока между автомобилем и дорогой и значительно приблизить условия в трубе к реальным условиям.
Вспомогательные системы аэродинамических труб
Система измерения площади поперечного сечения
Система измерения площади поперечного сечения (лазерная или на приборах с зарядовой связью) измеряет площадь поперечного сечения автомобиля оптическими средствами. Результаты измерений используются для вычисления аэродинамических коэффициентов и значений сил, измеренных в аэродинамической трубе.
Современные системы датчиков давления в аэродинамических трубах (например, плоские датчики давления, крепящиеся к поверхности кузова) могут одновременно регистрировать изменения давления как минимум в 100 точках. Миниатюрные (кварцевые) датчики давления во всех точках измерения выдают информацию в электронной форме с относительно высокой частотой (см. рис. «Система определения распределения давления» ).
Траверсная люлька
Траверсная люлька позволяет выполнить измерения во всем поле обтекающего автомобиль воздушного потока. Каждая точка испытуемого образца может быть описана координатами и воспроизведена. По показаниям датчиков, установленных во всех точках, затем могут быть определены значения давления, скорости и уровня шума в каждой точке.
Дымовые струи
Дымовые струи используются для визуализации воздушного потока, который в противном случае является невидимым. (см. рис. «Использование «дымового гребня» и дымовой струи для визуализации воздушного потока» ). Дымовые струи позволяют выявить те или иные неоднородности воздушного потока, которые могут стать причиной недостоверных результатов измерений вследствие снижающей энергию турбулентности. Нетоксичный «дым» обычно производится посредством нагрева смеси этиленгликоля в паромасляном генераторе. Другие методы визуализации воздушного потока включают:
- ленты на поверхности кузова;
- ленточные датчики;
- фотографии потока с использованием быстросохнущей смеси парафина или талька;
- генераторы пузырьков гелия;
- лазерные системы.
Система дисперсии загрязняющих агентов
Система дисперсии загрязняющих агентов может использоваться для орошения автомобиля в аэродинамической трубе водой с различной интенсивностью — от легкого тумана до сильного дождя. Картины распределения потоков могут быть визуализированы и задокументированы путем добавки к воде мела или флуоресцирующего вещества.
Блок подачи горячей воды
Блок подачи горячей воды обеспечивает подачу горячей воды с постоянным расходом для определения охлаждающей способности радиаторов на прототипах, которые не могут быть выпущены на дорогу.
Варианты аэродинамических труб
Сооружение автомобильных аэродинамических труб требует крупных капиталовложений. Эти капиталовложения в сочетании с высокими эксплуатационными затратами делают трубы дорогостоящим оборудованием с высокой почасовой ставкой стоимости использования. Только очень частое использование автомобильных аэродинамических труб для аэродинамических, аэроакустических и температурных экспериментов может оправдать сооружение нескольких специализированных аэродинамических труб для выполнения различных задач.
Аэродинамические трубы для испытаний на моделях
Аэродинамические трубы для испытаний на моделях значительно снижают эксплуатационные затраты, благодаря менее строгим конструктивным требованиям и меньшей технической сложности. В зависимости от масштаба (от 1:5 до 1:2), можно легко, быстро и экономично изменять форму моделей автомобилей.
Испытания на моделях в основном проводятся на ранних этапах разработки для оптимизации базовой аэродинамической формы кузова. При поддержке дизайнеров «пластилиновые» модели используются для оптимизации формы кузова или для формирования полного ряда вариантов перед испытаниями их аэродинамического потенциала.
Используя новые методы производства (быстрое создание прототипов), модели можно создавать быстро, точно и во всех деталях. Это позволяет выполнять на моделях важные исследования с целью оптимизации деталей, даже по окончании этапа разработки формы кузова.
Акустические аэродинамические трубы
В акустических аэродинамических трубах, благодаря надежной звукоизоляции, уровень звукового давления приблизительно на 30 дБ (А) ниже, чем в стандартных трубах. Это обеспечивает достаточно высокое отношение сигнал/шум, составляющее более 10 дБ (А), что позволяет идентифицировать и оценить шумы, генерируемые в результате циркуляции и сквозного потока воздуха.
Аэродинамические трубы с системами климат-контроля
Аэродинамические трубы с системами климат-контроля используются для теплового анализа и разработки систем защиты автомобиля в определенных температурных диапазонах при различных условиях нагрузки.
Для поддержания температуры в диапазоне от-40°С до +70°С с высокой точностью (±1 К) служат большие теплообменники.
Автомобиль устанавливается на динамометрических роликах и «приводится в движение» при требуемых условиях нагрузки или в условиях циклического изменения нагрузки. Скорости воздушного потока и вращения роликов должны быть точно согласованы, даже при низких скоростях. При необходимости, с целью учета влияния действующих в реальной ситуации факторов, могут моделироваться условия движения на подъем или под уклон. Также может регулироваться влажность воздуха или при помощи ламп может имитироваться солнечное излучение.
Тем не менее, не все проблемы, возникающие при проработке аэродинамики автомобилей, могут быть решены посредством описанных выше испытаний. В дополнение к экспериментальным исследованиям производители все более широко используют модели CFD (вычислительной гидродинамики). Они позволяют выработать предварительные решения с целью снижения нагрузки на испытательное оборудование.
РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ: