Тормозные системы грузовых автомобилей

Тормозные системы грузовых автомобилей

 

Тормозные системы грузовых авто­мобилей и прицепов должны удовлетворять требованиям различных предписаний, на­пример, RREG 71/320 EEC и ЕСЕ R13. В них изложены основные функции, эффекты и методы испытаний. Вот о том, как устроены тормозные системы грузовых автомобилей, мы и поговорим в этой статье.

 

 

 

Вся тормозная система делится на рабочую, стояночную, запасную и вспомогательную.

Рабочие тормозные системы грузовых автомобилей

 

Рабочая тормозная система тягачей

 

Рабочая тормозная система грузового автомобиля, представляющая собой систему с дополнитель­ным источником энергии (рис. «Структура пневматической тормозной системы с управлением прицепом» и «Пневматическая система двухосного прицепа с ABS» ), может работать со сжатым воздухом или с сочета­нием пневматики и гидравлики.

Структура пневматической тормозной системы с управлением прицепом

 

В случае сбоя, например, повреждения тор­мозного контура, работающая часть системы должна сохранять способность достижения как минимум эффекта запасного торможения — с той же управляющей силой на обычном устрой­стве управления. Должна обеспечиваться воз­можность измерения эффекта, и на прицеп не должен влиять этот сбой, т.е. управляющий клапан прицепа должен иметь двухконтурную конструкцию. Эффект запасного торможения должен достигать не менее 50% от эффекта рабочей тормозной системы. Поэтому систему обычно делят на два тормозных контура, уже разделенных на стороне подача, хотя эта кон­фигурация законодательно предписана только в автобусах.

Подача энергии на прицеп должна гаран­тироваться даже во время торможения. Двухконтурная система стала обязательной после вступления в силу предписания RREG 71/320, но уже предлагалась и раньше под названием «Nato».

Пневматическая система двухосного прицепа с ABS

 

На прицеп по питающему шлангу непрерывно подается сжатый воздух под определенным давлением. Оно должно составлять от 6,5 до 8,0 бар у исправного тягача, независимо от рабочего давления тягача, регламентиро­ванного изготовителем. Прицеп должен быть заменяемым. Рабочей тормозной системой прицепа управляет второй трубопровод — тормозной. Этот трубопровод также регла­ментируется предписаниями, относящимися к заменяемости прицепа. Таким образом, давление в трубопроводе в режиме движения должно составлять 0 бар, а в режиме полного торможения — 6,0-7,5 бар.

 

 

Рабочая тормозная система прицепов

 

Прицеп имеет независимую рабочую тормоз­ную систему, которая лишь частично требует эффекта запасного торможения. Согласно требованиям RREG 71/320, эффекты тормо­жения рабочей тормозной системы в тягаче и в прицепе должны находиться в узком диа­пазоне допустимых отклонений как функция управляющего давления в тормозном трубо­проводе, идущем к прицепу, т.е. они должны быть примерно одинаковы (расчетный диа­пазон отклонений RREG 71/320 и ЕСЕ R.13).

Схема совместимости тягача и прицепаПри повреждении питающей линии или тормозного трубопровода должна обеспе­чиваться возможность полного или частич­ного торможения прицепа, либо он должен инициировать автоматическое торможение. У грузовых автомобилей с электронно-управ­ляемыми тормозными системами наряду с тормозным пневмопроводом имеется воз­можность электрического управления ра­бочей тормозной системой в прицепе. Оно осуществляется через стандартизированный электрический разъем ISO 7638; в разъеме может быть 5 или 7 контактов.

Тягачи и прицепы должны быть взаимо­заменяемыми. Поэтому в Приложениях 2 RREG 71/320 и ЕСЕ R13 определены условия их совместимости. Соответственно, соот­ношение между замедлением и давлением на «тормозной» соединительной головке в диапазоне, изображенном на рис. «Схема совместимости тягача и прицепа» должно находиться в диапазоне 0,2-7,5 бар на «тор­мозной» соединительной головке. Эта схема применима только к тягачу и прицепу. Для всех остальных транспортных средств и их сочетаний существуют другие схемы.

Стояночная тормозная система грузового автомобиля

 

Стояночная тормозная система грузового автомобиля — это неза­висимая тормозная система, которая должна удерживать автомобиль в неподвижном со­стоянии после полной остановки даже при отсутствии водителя в автомобиле. Эффект удержания в неподвижном состоянии вы­числяется на уклоне автомобиля с полной загрузкой. Угол уклона для отдельных авто­мобилей категорий М, N, О (кроме О1) состав­ляет 18%. У автомобиля с прицепом эффект удержания в неподвижном состоянии должен также достигаться с расторможенным при­цепом. В этом случае угол уклона составляет только 12% (рис. «Условия испытаний стояночной тормозной системы» ).

Условия испытаний стояночной тормозной системыСтояночная тормозная система у грузовых автомобилей и автобусов обычно оборуду­ется тормозными цилиндрами с пружинными энергоаккумуляторами. Пружинные энергоаккумуляторы (когда колесные тормоза регулируются в соответствии с предписа­ниями) создают такую же силу, что и пнев­матические тормозные цилиндры в рабочей тормозной системе, когда номинальное давление (расчетное давление в тормозной системе) воздействует на их номинальную эффективную площадь. При возникновении определенных сбоев — например, неисправ­ностей тормозного контура или источника энергии, подпружиненные тормоза не могут тормозить автоматически и поэтому должны быть соответствующим образом защищены и устроены.

Стояночные тормозные системы с тормоз­ными цилиндрами, оборудованными пру­жинными энергоаккумуляторами, должны оснащаться как минимум одним устройством аварийного отпускания. Это устройство мо­жет быть механическим, пневматическим или гидравлическим. Стояночная тормозная система должна быть предназначена только для градуированной (дозированной) работы, если она должна достигать предписанного эффекта запасного торможения.

В прицепе стояночная тормозная система часто работает как система с мускульным источником энергии. Если систему управле­ния прицепом настроить так, чтобы рабочий тормоз в прицепе реагировал также при за­действовании стояночного тормоза в тягаче (управляющий клапан прицепа с воздушным ресивером 4.3, см. рис. «Структура пневматической тормозной системы с управлением прицепом» ), клапан стояноч­ного тормоза должен иметь тестовую регу­лировку. Это позволяет отпускать рабочий тормоз прицепа при задействовании стоя­ночного тормоза в тягаче. Это, в свою оче­редь, позволяет проверить, может ли тягач на одном стояночном тормозе удержать весь автопоезд.

 

 

Запасная тормозная система грузового автомобиля

 

Независимой запасной тормозной системы не существует. Она задействуется при воз­никновении неисправности рабочей тормоз­ной системы, например, в тормозном контуре или источнике энергии. В этом случае должна сохраняться возможность торможения как минимум двух колес (на одной оси).

Тормозная система прицепа тоже не должна затрагиваться этими неисправно­стями. По этой причине тормозные системы и активация прицепа имеют двухконтурную конструкцию.

Объем подачи должен быть рассчитан так, чтобы в случае сбоя в источнике энергии после восьми полных торможений рабочим тормозом давление было бы все еще доста­точным для достижения эффекта запасного торможения на девятом полном торможении. В случае сбоя в тормозном контуре на сто­роне подачи необходимо обеспечить, чтобы при исправном источнике энергии давление в исправных тормозных контурах не падало по­стоянно ниже номинального. Это достигается путем использования специальных защитных устройств, например, четырехконтурного пре­дохранительного клапана или электронного блока.

Вспомогательная тормозная система

 

Используемые колесные тормоза не предна­значены для непрерывного задействования. Длительное торможение (например, на за­тяжных спусках) может привести к перегреву тормозов. Это приводит к снижению эффекта торможения, а в худшем случае — к полному отказу тормозной системы.

Неизнашиваемой тормозной системой называют вспомогательную тормозную си­стему (тормоз-замедлитель). В Германии она регламентируется Правилами StVZO §41 с. 15 для использования в автобусах снаряженной массой более 5,5 т и в других транспортных средствах снаряженной массой более 9 т. Тормоз-замедлитель должен быть рассчи­тан на удержание полностью загруженного автомобиля при движении по спуску 7% на расстояние 6 км со скоростью 30 км/ч.

Рабочий тормоз должен соответственно рассчитываться и для прицепов. Работа тормоза-замедлителя в тягаче не должна обуславливать задействование рабочего тормоза в прицепе (см. также StVZO §72 и Ведомости Федерального законодательства 199011 Р. 885,1102).

 

 

Компоненты тормозных систем грузовых автомобилей

 

Пневмосистема грузового автомобиля

 

Пневмосистема состоит из источника энер­гии, регулятора давления, подготовки воз­духа и распределения сжатого воздуха.

Компрессор тормозной системы

 

Компрессор — источник энергии. Он вса­сывает воздух и сжимает его до состояния рабочей среды для тормозных систем и вспомогательного оборудования (например, пневмоподвески, системы закрывания дверей).

Компрессор тормозной системыКомпрессор представляет собой поршне­вой насос, в котором коленчатый вал при­водится прямо от двигателя автомобиля (рис. «Компрессор» ). Компрессор крепится к ДВС через фланец. Компрессор состоит из следующих компонентов:

  • Картер, образующий моноблок с цилин­дром; в картере расположен коленчатый вал с шатуном и поршнем;
  • Головка цилиндра с впускным и выпуск­ным штуцерами, а также штуцеры системы жидкостного охлаждения;
  • Промежуточная пластина с впускным и вы­пускным клапанами.

 

Для уменьшения потерь при создании необхо­димого давления в пневмосистеме используется система энергосбережения (ESS); она прекра­щает процесс дальнейшего сжатия воздуха, пе­реводя работу компрессора в режим холостого хода. В результате снижается расход топлива.

Во время возвратного такта поршень вса­сывает воздух после автоматического откры­вания впускного клапана из-за образовавше­гося вакуума. Впускной клапан закрывается в начале обратного такта поршня. При такте сжатия поршень сжимает воздух. По дости­жении определенного давления открывается выпускной клапан, и сжатый воздух подается в тормозную систему.

Рабочий объем современных компрессо­ров достигает 720 куб. см, давление 12,5 бар, а максимальные обороты 3000 мин-1. Ком­прессоры отличаются высокой эффективно­стью, низким потреблением масла и длитель­ным сроком службы.

Регулятор давления тормозной системы

 

Регулятор давленияРегулятор давления регулирует подаваемый компрессором сжатый воздух таким образом, чтобы рабочее давление находилось в преде­лах давления активации и отсечки (рис. «Регулятор давления» ).

Пока давление в резервуарах сжатого воздуха ниже давления отсечки, штуцеры 1 и 2 соединены, и сжатый воздух проходит через регулятор давления. По достижении давления отсечки регулятор давления пере­ключается в холостой режим. В этом случае активируется выпускной поршень, и штуцер 1 соединяется с атмосферой (выпуск).

 

Воздухоосушитель тормозной системы

 

Воздухоосушитель со встроенным регулятором давленияВоздухоосушитель очищает и осушает сжа­тый воздух во избежание коррозии и замер­зания в тормозной системе в зимний период.

Воздухоосушитель состоит из осуши­тельной коробки и корпуса с выпускным воздушным клапаном и устройством для восстановления гранул (рис. «Воздухоосушитель со встроенным регулятором давления» ). Гранулят восстанавливается путем активации в восста­новительном ресивере.

Когда выпускной воздушный клапан за­крыт, то сжатый воздух протекает через осушительную коробку и оттуда проходит в питающий ресивер. В то же время ресивер ре­генерации заполняется сухим сжатым возду­хом. По мере прохождения сжатого воздуха через осушительную коробку влага удаляется путем конденсации и впитывания.

Гранулированный состав в осушающей коробке обладает ограниченной водопогло­щающей способностью и поэтому должен ре­генерироваться через регулярные интервалы. В процессе регенерации сухой сжатый воз­дух из ресивера регенерации через регенери­рующий дроссель проходит сквозь влажный гранулированный состав, извлекая из него влагу, и через открытый выпускной клапан возвращается в атмосферу.

Регулятор давления и воздухоосушитель можно скомбинировать в один блок.

 



 

Четырехконтурный предохранительный клапан

 

Четырехконтурный предохранительный клапан распределяет сжатый воздух по различным тормозным и вспомогательным контурам, изо­лирует контуры друг от друга и обеспечивает подачу воздуха в оставшиеся контуры при не­поладках в одном из контуров (рис. «Четырехконтурный предохранительный клапан» ).

Четырехконтурный предохранительный клапанФункция четырехконтурного предохрани­тельного клапана обеспечивается с помощью перепускных клапанов, специально разработанных для этой области применения. В от­личие от обычного перепускного клапана этот перепускной клапан имеет две разных зоны действия на приточной стороне. Давление, поступающее с регулятора давления, воздей­ствует на одну зону, а давление из контура пневматики — на другую. Таким образом, давление открывания перепускных клапанов зависит от давления (остаточного) в соответ­ствующем контуре пневматики.

Перепускные клапаны могут располагаться по-разному. Зачастую контуры 1 и 2 и вспо­могательные контуры 3 и 4 последовательно соединяются парами. Это гарантирует, что как минимум один из двух контуров рабочей тор­мозной системы заполняется в порядке прио­ритетности. Вспомогательные контуры для кла­панов этого типа дополнительно защищаются двумя невозвратными клапанами. Их можно не устанавливать в случае с четырехконтурными

защитными клапанами с центральным при­током. Эти перепускные клапаны могут также оснащаться ограничителями переменного по­тока. Они позволяют заполнять пустую систему небольшими объемами воздуха.

При возникновении сбоя, например, в кон­туре 1 (из-за течи), давление сначала падает только в контуре 1 до 0 бар, а в контуре 2 до давления закрытия. Давление в контурах 3 и 4 изначально поддерживается за счет не­возвратных клапанов, но падает до давления закрытия из-за расходования воздуха. Воз дух продолжает нагнетаться компрессором в исправные контуры, так как остаточное давление в контурах 2, 3 и 4 воздействует на вторичную зону соответствующих перепуск­ных клапанов. Исправные контуры снова за­полняются, до тех пор, пока давление откры­вания неисправного контура (1-го контура) не начнет воздействовать на первичную зону соответствующего перепускного клапана, открывая его. Дальнейший рост давления невозможен, потому что, начиная с этого мо­мента, подаваемый сжатый воздух улетучи­вается через неисправный контур. Давление открывания через первичную зону действия регулируется таким образом, чтобы оно было больше либо равно номинальному (расчет­ному) давлению тормозной системы. Это обе­спечивает и достаточную подачу сжатого воз­духа в исправный контур рабочей тормозной системы, и эффект вторичного торможения. Также поддерживается подача сжатого воз­духа во вспомогательные контуры — прицепа, стояночной тормозной системы и пневмоподвески.

Электронный блок обработки воздуха

 

Сегодня регулировка давления, подготовка воздуха и распределение сжатого воздуха сочетаются в одном электронном блоке — блоке обработки воздуха. Электронный блок обработки воздуха (EAC, Electronic Air Control) — это функциональное объединение регулятора давления, воздухоосушителя и многоконтурного предохранительного кла­пана в одном мехатронном устройстве. Это дает значительные преимущества в плане за­трат на систему, функциональности и энер­госбережения.

Аккумулирование энергии

 

Энергия, необходимая для торможения и для работы вспомогательных контуров, накапли­вается и хранится в достаточных количествах в ресиверах сжатого воздуха, допущенных к экс­плуатации в автомобилях. Объем должен рас­считываться так, чтобы, без последующей по­дачи, после восьми последующих торможений все еще достигался предписанный для этого автомобиля эффект вторичного торможения, как минимум на девятом полном торможении. Несмотря на использование воздухоосуши­теля, ресиверы со сжатым воздухом осна­щаются ручными или автоматическими дре­нажными устройствами. Ресиверы со сжатым воздухом должны выполнять требования §41 а с. 8 в увязке с § 72 StVZO, и должны по­лучать допуск к эксплуатации и иметь иден­тификационное обозначение.

Системы подачи для тормозных систем должны оснащаться сигнальными устройствами. При этом предъявляются следующие требования:

  • Красная сигнальная лампа;
  • Всегда видна водителю;
  • Загорается не позднее, чем при задейство­вании тормоза или падении давления на входе рабочей тормозной системы до 65% от номинального. Для стояночной тормоз­ной системы (подпружиненного тормоза) этот показатель составляет 80% от номи­нального давления.

 

 

Тормозной кран рабочей системы

 

Клапаны рабочего тормоза (рис. «Тормозной кран рабочей системы» ) имеют двухконтурную конструкцию и регулируют контуры рабочего тормоза соответственно управляющему усилию (клапаны, управляе­мые усилием).

Тормозной кран рабочей системыКонтур 1 активируется устройством управ­ления, шатуном и компрессионными пружи­нами (пружинами компенсации хода). Управ­ляющий поршень идет вниз, сначала закрывая выпускной клапан и затем открывая впускной. Сжатый воздух попадает в тормозной контур 1, и давление повышается. Тормозное давле­ние воздействует на управляющий поршень в направлении вверх, упирая его в компрессион­ные пружины до выхода за границы диапазона торможения. Крайнее положение тормоза до­стигается при равновесии сил, воздействую­щих на управляющий поршень.

Контур 2 регулируется тормозным дав­лением в контуре 1. Он, вместо устройства управления сверху, воздействует на реактив­ный поршень контура 2. Приблизительно в то же время в контуре 2 тоже достигается край­нее положение тормоза. В положении полного торможения или в случае сбоя в контуре 1 оба управляющих поршня механически переме­щаются в полностью вытянутое положение с помощью устройства управления. Выпускные клапаны закрываются, а впускные остаются от­крытыми. Контуры 1 и 2 пневматически полно­стью и безопасно изолированы друг от друга. Особые конструкции обеспечивают разные контролируемые давления торможения для контуров 1 и 2. Они требуются, если клапаном рабочего тормоза активируется двухконтурный усиливающий цилиндр, или если управление контуром 2 зависит от нагрузки. Это стано­вится возможным путем установки соответ­ствующей пружины или реактивного поршня с несколькими зонами действия.

Тормозной кран стояночной системы

 

Тормозной кран стояночной системыКраны стояночного тормоза (рис. «Тормозной кран стояночной системы» ) регу­лируют давление в тормозных цилиндрах с пружинными энергоаккумуляторами в зави­симости от положения рычага. Рычаг должен надежно фиксироваться в положении «тормоз включен». Краны стояночного тормоза пред­назначены только для градуированной (до­зированной) работы, если он должен дости­гать эффекта запасного торможения. Краны стояночного тормоза должны быть снабжены испытательной регулировкой, когда в прицепе после активации стояночного тормоза приво­дится в действие рабочая тормозная система.

Существуют различные варианты кранов стояночного тормоза, в зависимости от об­ласти применения: неградуированные, гра­дуированные или градуированные с крутой характеристической кривой. Последний ва­риант обеспечивает очень чувствительный градуируемый эффект, так как рабочий диа­пазон тормозных цилиндров с пружинными энергоаккумуляторами, при угле рычага крана стояночного тормоза около 80°, используется оптимально. Рабочий диапазон тормозных цилиндров с пружинными энергоаккумулято­рами находится в пределах от 5 бар (начало торможения) до примерно 2 бар (конец тор­можения, см. схемы на рис. «Характеристика давления» ).

Характеристика давленияВ пневматических тормозных системах высо­кого давления (рабочее давление более 10 бар) кран стояночного тормоза может оснащаться ограничителем давления, чтобы можно было ис­пользовать стандартные тормозные цилиндры с пружинными энергоаккумуляторами. Устрой­ство в кранах стояночного тормоза для полу­чения возможности измерения регулируемого давления схоже с устройством в кранах рабочего тормоза, но работает в обратном направлении, потому что тормозные цилиндры с пружинными энергоаккумуляторами вентилируются в режиме движения и режим включенного тормоза дости­гается путем стравливания воздуха.

Краны стояночного тормоза могут иметь двухконтурную конструкцию. В этом случае система запитывается из контура 3, а пнев­матическое вспомогательное отпускающее устройство пружинных актюаторов — из кон­тура 4. В этом случае можно отказаться от дополнительной поворотной ручки-кнопки, золотникового или обратного клапана.

В варианте с крутой характеристической кривой (рис. «Характеристика давления«), начало торможения до­стигается раньше, и диапазон активации зна­чительно шире. Это имеет преимущества, в частности, при использовании стояночного тормоза в качестве запасного тормоза.

Автоматический регулятор тормозной силы, чувствительный к нагрузке

 

Система автоматической регулировки тор­мозного усилия в зависимости от нагрузки (ALB) — необходимый элемент в передающем устройстве рабочей тормозной системы в грузовом автомобиле. Автоматический регулятор тормозной силы с клапаномКлапаны, отвечаю­щие за распределение тормозных сил, по­зволяют регулировать тормозные силы под небольшие нагрузки на оси в частично за­груженном и незагруженном состоянии и, соответственно, устанавливать коррекцию распределения тормозных сил между осями отдельных транспортных средств или определенный уровень торможения в автопоездах и полуприцепах.

Автоматический регулятор тормозной силы (рис. «Автоматический регулятор тормозной силы с клапаном» ) подключается между краном рабо­чего тормоза и тормозным цилиндром. В зави­симости от нагрузочного режима автомобиля с помощью регулятора изменяется тормозное давление. Устройство имеет диафрагму с переменной активной площадью. Диафрагма регулятора опирается на два радиально рас­положенных и свободно входящих друг в друга скоса. В зависимости от положения седла кла­пана управления в вертикальном направлении имеется большая активная площадь (поло­жение клапана внизу) или меньшая (положе­ние клапана вверху). Тормозные цилиндры снабжаются воздухом через ускорительный клапан, давление после которого несколько меньше (ненагруженное состояние), чем от крана рабочей системы, или является таким же (полностью загруженное состояние). Регули­рующий кран можно перевести в положение, чувствительное к нагрузке с помощью эксцен­трика, присоединяемого через систему рыча­гов к оси автомобиля или с помощью клина (у автомобилей с пневматической подвеской).

Ограничитель давления, который располо­жен в верхней части регулятора, пропускает небольшой поток воздуха ограниченного давления (примерно 0,5 бар) в полость над диафрагмой. Таким образом, до образования этого давления не происходит какого-либо уменьшения давления в тормозном цилин­дре. Это необходимо для синхронного вклю­чения тормозов на всех осях автомобиля.

 

 

Комбинированный тормозной цилиндр

 

Комбинированный цилиндр в грузовом авто­мобиле состоит из диафрагменного рабочего цилиндра и пружинного актюатора стояноч­ного тормоза (рис. «Комбинированный тормозной цилиндр дискового тормоза» ). Комбинированный тормозной цилиндр дискового тормозаЭти детали распола­гаются одна за другой и воздействуют с определенной силой на объединенный шток.

Различают комбинированные цилиндры для тормозов с S-образным кулачком, бара­банных тормозов с клиновым разжимным устройством и дисковых тормозов в зависи­мости от типа колесного тормоза.

Два цилиндра могут активироваться неза­висимо друг от друга. Одновременное срабаты­вание обеспечивает суммирование сил. Этого можно избежать путем установки специального клапана управления, чтобы автоматически пре­дотвращалась механическая перегрузка других компонентов (например, тормозных барабанов).

Центральный отпускающий винт позволяет подтягивать пружину актюатора без подачи сжатого воздуха (механическое устройство аварийной разблокировки). Это необходимо для упрощения установки или, в случае сбоя подачи сжатого воздуха, получения возмож­ности для маневрирования автомобиля.

При задействовании рабочего тормоза сжа­тый воздух попадает под диафрагму в цилиндр и прижимает плунжерный диск и толкатель к рычагу дискового тормоза. Сброс давления ве­дет снова к отключению тормозного механизма.

Когда сжатый воздух попадает в пружин­ный актюатор, поршень сжимает пружины, отпуская тормоз. Если камера вентилируется, то пружинный актюатор через шток воздей­ствует на диафрагменную часть и вдавливает толкатель в механизм дискового тормоза че­рез диск поршня.

Клапан управления тормозами прицепа

 

Клапан управления тормозами прицепа, уста­новленный на тягаче, управляет рабочим тор­мозом прицепа. Этот многоконтурный клапан управления запитывается через магистрали как рабочей, так и стояночной тормозных систем (рис. «Клапан управления тормозами прицепа с функцией расцепления» ). В режиме движения пи­тающая камера III и камера IV контура стоя­ночного тормоза находятся под одинаковым давлением. Тормозной трубопровод, идущий к прицепу, соединяется с атмосферой через центральное выпускное отверстие (3). Рост давления в камере I тормозного контура 1 и в камере V тормозного контура 2 ведет к соответствующему повышению давления в камере II тормозного трубопровода, идущего к прицепу. Уменьшение давления в обоих контурах рабочей системы приводит к такому же уменьшению давления в тормозном тру­бопроводе. Работа стояночной тормозной си­стемы приводит к выпуску воздуха из контура стояночного тормоза (камера IV). В резуль­тате растет давление в камере II тормозного трубопровода, идущего к прицепу. Когда воз­дух попадает в камеру IV, из трубопровода снова выпускается воздух.

 

Клапан управления тормозами прицепа с функцией расцепления

 

Если снять тормозной трубопровод, иду­щий к прицепу, то давление в питающем трубопроводе к прицепу должно упасть до уровня 1,5 бар менее чем за две секунды (предписывается Правилами RREG 71/320). Для этого подача сжатого воздуха в питаю­щий трубопровод ограничивается с помощью встроенного клапана.

В следующей статье я расскажу о тормозной системе грузовых автомобилей с электронным управлением.

 

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *