Асинхронный и синхронный электродвигатели в автомобиле

Асинхронный и синхронный электродвигатели в автомобиле

 

Электродвигатели, работающие на том же законе, что и электромеханический преобразователь Якоби, тем не менее существенно от него отличаются. Электродвигатели разных типов обладают отличительными свойствами, которые обуславливают их область применения, в которой они наиболее полезны. Электрические двигатели становятся мощнее и компактнее, к тому же, их КПД значительно вырос. Так коэффициент полезного действия современного тягового электродвигателя может составлять 85-95 % в то время как максимальный КПД двигателя внутреннего сгорания без вспомогательных систем едва дотягивает 45 %. Вот о том, какими бывают асинхронный и синхронный электродвигатели в автомобиле, мы и поговорим в этой статье.

 

 

Асинхронный электродвигатель

 

Асинхронный электродвигатель — основной привод, используемый в промышленности. К примеру, в автомобилестроении он исполь­зуется в электроусилителях рулевого управ­ления и в гибридных автомобилях. В следую­щем разделе представлена концепция работы асинхронного двигателя как индукционной машины. Приведен также энергетический анализ асинхронного двигателя в силу его явного преобладания среди приводов.

 

Устройство асинхронного электродвигателя

 

Различают двигатели с внешним ротором и внутренним ротором. У двигателей с внеш­ним ротором статор находится внутри ро­тора, у двигателей с внутренним ротором наоборот — ротор находится внутри статора. На принципиальной схеме (рис. «Принцип работы асинхронного двигателя» ) показана принципиальная схема асинхронного двига­теля с внутренним ротором.

 

Принцип работы асинхронного двигателя

 

Ротор состоит из короткозамкнутого кар­каса с пакетом пластин (рис. «Короткозамкнутая клетка асинхронного электродвигателя» ), в качестве примера с четырьмя короткозамкнутыми стержнями). Пакет пластин полностью за­полняет пространство короткозамкнутого каркаса (на рис. не показано). Он состоит из отдельных стальных листов, изолированных друг от друга, чтобы свести к минимуму по­тери вихревых токов.

 

Рабочие характеристики асинхронного электродвигателя

 

Обмотка статора создает вращающееся поле с трехфазным переменным током. Между скоростью вращающегося поля и скоростью ротора возникает разница, создающая индук­цию магнитно-эффективного тока в роторе, которая в свою очередь способствует созда­нию крутящего момента.

Двухполосный короткозамкнутый роторФизический принцип работы основан на законе магнитной индукции. На рис. «Двухполосный короткозамкнутый ротор» изо­бражен ротор в виде упрощенного проводя­щего контура на вращающихся креплениях. Относительное перемещение между стато­ром и ротором описывает угловая частота (os. Магнитное поле ВЕ с угловой частотой, окру­жающее контур ротора, наводит напряжение в короткозамкнутом роторе в соответствии со вторым уравнением Максвелла:

ΦEds = -d/dt∫∫BEdA   (уравнение 12)

На основании этого уравнения и конструк­тивных переменных двигателя (см. рис. 13) получаем:

2E (l+2r) п = 2lr·ВЕ·ω sin(ωt) (уравнение 13)

где:

Е = I · Аnom /к  (к — удельная электро­проводность), напряжение создает магнитно­эффективную мощность

i = (к·Аnomlr·ωs/(l+r))·sin(ωst)   (уравнение 14)

в проводящем контуре, магнитное поле ко­торого

Hind = i·N/lFe

и плотность потока (магнитная индукция)

Bind = μ·Hind

ослабляет исходное вращающееся поле ВЕ (индуктивное сопротивление). Нижеследую­щее уравнение применимо для получения результирующей магнитной индукции:

BR = BE-Bind

В уравнении Максвелла (уравнение 13) вме­сто ВЕ остается результирующая магнитная индукция BR. На проводящий контур воздей­ствует тангенциальная сила Ft:

Ft = i l BR sin(ωst)   (уравнение 15)

(сила Лоренца). Она используется для вычис­ления крутящего момента. Для уравнений 14 и 15 справедливо следующее:

M=2 Ft r = (2 k·Anom ωs/(l+r))·(lr·BR sin(ωst))2

Распределение крутящего момента асинхронного двигателяНа рис. «Распределение крутящего момента асинхронного двигателя» показаны две характеристические кривые. Одна из них отображает крутящий момент под влиянием индуктивного сопротивления. На него может повлиять геометрия вала ротора и выбор материалов. Другая кривая отображает крутящий момент без влияния индуктивного сопротивления. Это ограниченный случай для технической реа­лизации.

При увеличении угловой частоты индук­тивное сопротивление сначала приводит к увеличению крутящего момента вплоть до достижения переломного момента. Это максимально возможный крутящий момент двигателя. Впоследствии он падает из-за увеличивающегося влияния индуктивного сопротивления. Рассеяние мощности Рv, воз­никающее в проводящем контуре, вычисля­ется на основе сопротивления проводящего контура Rs и тока, наведенного в контуре is:

Pv = Rs— is2

Таким образом, рассеяние мощности растет пропорционально квадрату наведенного тока.

 

Классы эффективности двигателей

 

СЕМЕР Европейский Комитет изготовителей электродвигателей и силовой электроники) ввел классификацию эффективности на базе трех классов (EFF1, EFF2 и EFF3). Классы эф­фективности применяются к трехфазным асинхронным двигателям с двумя и четырьмя полюсами, а также с выходной мощностью от 1,1 до 90 кВт (рис. «Эффективность и выходная мощность» ).

 

Эффективность и выходная мощность Базовая конструкция синхронного двигателя

 

Синхронный электродвигатель

 

Синхронные электродвигатели используются, в основном, в качестве генераторов пере­менного тока с клювообразными полюсами. В качестве электродвигателей они использу­ются, например, в электроусилителях руля, в электроприводах гибридных автомобилей и в электроприводах турбонагнетателей.

 

Устройство синхронного электродвигателя

 

В отличие от асинхронного двигателя, в син­хронном ротор вращается синхронно с по­лем возбуждения с угловой скоростью ωΦS. Магнитный поток ФR, создаваемый обмот­кой ротора, и магнитный поток статора ФS накладываются друг на друга относительно результирующего магнитного потока ФRS (рис. «Базовая конструкция синхронного двигателя» ):

ФRS = Ф+ ФS

Поскольку ротор и статор работают на­много ниже уровня магнитного насыщения (μr—> ∞), воздушный зазор δ между ротором и статором, а также угол а определяют сопро­тивление магнитной цепи Rm.

Rm = 2δ/μ0 Ar = 2d/μ0 Ar cos(уравнение 16).

Силы на ротореКоэффициент 2 используется потому, что между ротором и статором имеются два за­зора. Если электродвигатель выдает крутя­щий момент, то ротор вращается с углом а из положения холостого хода (рис. «Силы на роторе» ).

Результирующий магнитный поток ФRS рассчитывается по формуле:

ФRS = Θer/Rm + ФS

При Rm из уравнения 16 имеем:

ФRS = (Θer μ0 Ar cosa + 2d·ФS) /2d

При Θer = NIer получаем:

 ФRS = N Ier μ0 Ar cosa+2d ФS /2d   (Уравнение 17).

Θer — это магнитное «захлебывание» ротора, а Iеr — ток возбуждения, подаваемый на ро­тор через контактные кольца. Влияющая на крутящий момент тангенциальная сила Ft вычисляется по формуле полюсной силы Максвелла:

Ft = (ФRS20 Ar) sin а      (уравнение 18)

Тангенциальная сила используется для вычисления крутящего момента двига­теля МM:

MM = 2Ft r            (уравнение 19).

Уравнение 17 вставляется в уравнение 18 и результат в уравнении 19 дает следующую зависимость:

Мм=-(r sin а/μ0 Ar d2[(N Ier μ0 Ar cosa)2+4 N Ier μ0 Ar d Фcosa + 4 d2 ФS2]

Кривая момента и угла отклоненияПервый член зависит только от тока воз­буждения Ier и соответствует моменту от зубцовых гармонических помех поля. Второй член создает момент двигателя в решающей степени. Здесь можно увидеть линейную за­висимость «захлебывания» ротора Θ = IerN и магнитного потока статора Фs. Третий член также создает крутящий момент и зависит лишь от магнитного потока статора.

Рост внешнего нагружающего момента приводит к увеличению угла нагрузки а и, стало быть, к изменению момента двига­теля Мм (рис. «Кривая момента и угла отклонения» ). Максимальный создавае­мый двигателем момент обозначается как Мк в положении ак. При превышении ак электро­двигатель «буксует».

 

 

Рабочие характеристики синхронного электродвигателя

 

Однофазная эквивалентная электрическая схема синхронного электродвигателяСхема синхронного двигателя может быть выполнена в виде однофазной эквивалент­ной электрической схемы, где источником напряжения считается напряжение, инду­цируемое ротором в статоре (напряжение на полюсном колесе Up, а остаточные ин­дуктивные сопротивления складываются, образуя синхронное сопротивление ХS (рис. «Однофазная эквивалентная электрическая схема синхронного электродвигателя» ). Напряжение сверх синхронного сопро­тивления обозначается как Us, а напряжение на клеммах — U0. Направление тока указыва­ется в соответствии с системой стрелок для устройств-потребителей. В то время как при работе двигателя ток течет к потребителям, при работе генератора он течет от генератора. Составив сеточное уравнение, получаем ток I

I = U0 — Up / Х(уравнение 20).

На напряжение на полюсном колесе влияет ток возбуждения. Формулы выводятся ниже. Имеем:

U= d Ф/ dt

При косинусоидальном магнитном потоке ФR и

Ф= B AS

включая его временное дифференцирова­ние, получаем:

Up R ωФS sin(ωФS t)

=BR AS ωФS sin(ωФS t)

=μ HR AωФS sin(ωФS t)

Интенсивность создаваемого в роторе маг­нитного поля описывается законом Ампера. Напряжение на полюсном колесе:

UP = μ(ΘR/2δ) AωФS sin(ωФS t)

=Ier(μ N/2δ)AωФS sin(ωФS t)

= usin(ωФS t)

в этом случае будет линейно зависимым от тока возбуждения Ier . Временно изменяемое напряжение на полюсном колесе преобразуется в эффективное по формуле:

UP = up/√2

Рабочее состояние синхронного двигателяНа базе сеточного уравнения (уравнение 20) можно вывести три рабочих со ия син­хронного двигателя в зависимости от напря­жения на полюсном колесе (рис. «Рабочее состояние синхронного двигателя» ):

случай 1: UР< U0, недостаточное возбужде­ние, индуктивное поведение;

случай 2: Up = U0, работа вхолостую;

случай 3: Up > U0, избыточное возбуждение, как конденсатор.

Первый случай имеет место, пока UP<U0. Если Iеr = 0, то в качестве наведенного напря­жения принимается лишь самонаводящееся напряжение. Если на ротор подается ток, то действует вызываемая ротором взаимная индукция. Первый случай называется не­достаточным возбуждением. Ток отстает от напряжения на 90° (I,U)< 0). Синхронный двигатель демонстрирует индуктивные ха­рактеристики.

Дальнейшее повышение тока возбуждения приводит к Up = U0. В результате получаем второй случай (работа вхолостую). Ток I1 ста­новится равен нулю, если через синхронное сопротивление больше не подается напря­жение.

Дальнейшее повышение тока возбуждения при UP> U0 приводит к третьему случаю (из­быточное возбуждение).

Все три случая относятся к работе двига­теля и генератора. Для однофазной эквива­лентной электрической схемы напряжение и ток обозначаются стрелками. Кроме того, определяется нагрузочный угол β между на­пряжениями U0 и Us. Для работы двигателя нагрузочный угол β < 0 (рис. а, «Рабочие характеристики синхронного двигателя, работающего в режиме двигателя» ). Треуголь­ник напряжений замыкается напряжением Us.

 

Рабочие характеристики синхронного двигателя, работающего в режиме двигателя

 

Синхронное сопротивление означает, что протекает ток I1 (опережающий на 90° на­пряжение Us. Он разбивается на следующие компоненты: активный ток IW и реактивный ток Iв (рис. а, «Рабочие характеристики синхронного двигателя, работающего в режиме двигателя» ).

Если напряжение на полюсном колесе уменьшить так, чтобы стрелка реактивного напряжения Us находилась вертикально на стрелке напряжения на клеммах, то дви­гатель будет лишь потреблять активный ток (рис. ЬРабочие характеристики синхронного двигателя, работающего в режиме двигателя» ).

Дальнейшее снижение напряжения на по­люсном колесе приводит к недостаточному возбуждению. Ток I1 отстает от напряжения Us на 90°, что равноценно индуктивным ха­рактеристикам двигателя (рис. с, «Рабочие характеристики синхронного двигателя, работающего в режиме двигателя» ).

При приложении к двигателю крутящего момента, он переходит в режим генератора. Работа в режиме генератора отличается по­ложительным нагрузочным углом β (рис. «Рабочие характеристики синхронного двигателя в режиме генератора» ). Знак тока становится отрицательным. Ток опекает от электродвигателя. В случае перевозбуждения электродвигатель ведет себя как конденсатор. Он выдает реактивную мощность (рис. аРабочие характеристики синхронного двигателя в режиме генератора» ).

 

Рабочие характеристики синхронного двигателя в режиме генератора

 

Если напряжение на полюсном колесе уменьшить так, чтобы стрелка реактивного напряжения Us находилась вертикально на стрелке напряжения на клеммах, то двига­тель будет лишь выдавать активный ток (рис. Ь, «Рабочие характеристики синхронного двигателя в режиме генератора» ).

Дальнейшее снижение напряжения на по­люсном колесе приводит к недостаточному возбуждению. Электродвигатель ведет себя индуктивно. Он потребляет реактивную мощ­ность (рис. с, «Рабочие характеристики синхронного двигателя в режиме генератора» ).

 

Электронно-коммутируемые двигатели

 

Виды роторов для электронных двигателейВ случае с электронно-коммутируемыми дви­гателями (электронные двигатели), возбуж­дающая обмотка ротора, в том числе электри­ческий контакт с токоприемными кольцами, не требуются. Электронно-коммутируемые двигатели представляют собой бесщеточные синхронные двигатели, где роторы снабжа­ются постоянными магнитами. Постоянные магниты могут располагаться, к примеру, на поверхности ротора или внутри него (рис. «Виды роторов для электронных двигателей» ). Коммутация тока происходит в фикси­рованной обмотке статора с помощью элек­тронного блока (рис. «Активационная электроника электронно-коммутируемого двигателя» ).

 

Активационная электроника электронно-коммутируемого двигателя

 

Частота вращения электронно­коммутируемого двигателя задается часто­той окружающего поля статора. Для опреде­ления положения ротора требуются датчики. Широко распространены датчики Холла, устанавливаемые в рабочем зазоре для обе­спечения цикличного переключения между ветвями обмотки с помощью активационной электроники.

 

Система трехфазного тока

 

Техническое значение имеет применение системы трехфазного переменного тока в качестве системы трехфазного тока, основ­ной особенностью которой является то, что сумма всех напряжений и токов всегда равна нулю.

 

Обмотка двухполюсного двигателя с одной парой полюсов на каждую ветвь

 

Электрические цепи называются фазами т. Совокупность электрических цепей, в кото­рых напряжения одной частоты оказывают воздействие и имеют фазовый, сдвиг назы­ваются многофазными системами. Много­фазная система состоит из ветвей обмотки. В многофазной системе может быть п = 3 симметричных систем (рис. «Симметричные системы» ). Во всех сим­метричных системах — за исключением ну­левой системы — сумма всех векторов равна нулю. При количестве фаз т получаем п симметричных систем в зависимости от угла сдвига фаз а:

а = 2π n/m

Задача обмоток — создание вращающегося поля. Асинхронные двигатели имеют такую же конструкцию статора. В воздушном за­зоре должно создаваться магнитное поле с постоянной амплитудой, вращающееся с по­стоянной угловой скоростью. Чтобы создать это поле, временные положения фаз токов должны совпадать с пространственными по­ложениями соответствующих ветвей. У про­стой симметричной системы (п = 1) с т = 3 три ветви (обозначаемые как U, V и W) и, следовательно, обмотки должны быть равно­мерно распределены по окружности. На рис. «Обмотка двухполюсного двигателя с одной парой полюсов на каждую ветвь»  показано расположение обмотки с тремя ветвями, с одной катушкой на каждую пару полюсов и ветвь. Схемы соединений фаз регламентируются стандартом DIN EN 60034, часть 8.

 

Создание вращающегося поля

 

Создание вращающегося поля с одной катушкой на ветвьЧтобы создать вращающееся поле в случае с простой симметричной системой (п = 1) с ко­личеством ветвей т = 3, ветви должны быть геометрически смещены на электрически эф­фективный угол:

аеI = 360°·1/3  = 120°.

При одной катушке на каждую пару полюсов и ветвь создаваемое магнитное поле враща­ется против часовой стрелки, при этом «ин­дикаторная полоска», смещающаяся вправо на рисунке а, «Создание вращающегося поля с одной катушкой на ветвь» (при а = 90°), показывает ток фазы в каждой из ветвей на рис. Ь, «Создание вращающегося поля с одной катушкой на ветвь» в на­правлении магнитного потока. Расположение образует пару полюсов. Соответствующие магнитные потоки проходят вертикально к плоскости ветвей обмотки (рис. Ь, «Создание вращающегося поля с одной катушкой на ветвь»).

Поток ФRes (рис. с, «Создание вращающегося поля с одной катушкой на ветвь»), получаемый из трех ветвей, а также его направление достигаются геометрическим сложением трех отдельных потоков ФU, ФV И ФW.

Продвижение индикаторной полоски на угол а = 180° приводит к реверсированию на­правления тока в ветви W и, следовательно, к дальнейшему повороту созданного поля ФRes вправо (рис. «Создание вращающегося поля с одной катушкой на ветвь 2»).

 

Обмотка с двумя парами полюсов на каждую ветвь

 

Создание вращающегося поля с двумя катушками на ветвьПри использовании двух катушек на одну ветвь расположение проводников «удваива­ется». Если обмотка должна образовывать две пары полюсов = 2), то обмотки необ­ходимо делить на группы (рис. «Обмотка с двумя парами полюсов на каждую ветвь» ). При этом устанавливается механически эффективный угол:

am = 360° · (1/mp) = 60°.

Электрически эффективный угол остается без изменения. В случае как двухполюсного, так и четырехполюсного расположения поле вращается против часовой стрелки (рис. «Создание вращающегося поля с двумя катушками на ветвь» ). Чаcтоту вращения поля:

nd = fn/p

можно вычислить на основании частоты в линии fn и количества пар полюсов р. При р = 1 частота вращения поля равна частоте в линии (табл. «Частота вращающихся полей» ).

Вместе с количеством пар полюсов можно вычислить межполюсное расстояние:

τp = dsi /2π

Частота вращающихся полейкак долю окружности статора, где dsi — вну­тренний диаметр статора. Он соответствует длине синусоидальной полуволны, которая соответствует распределению индукции поля ротора. В случае с двухполюсным двигате­лем (р = 1), межполюсное расстояние всегда равно aei = 180° (электрический угол) и со­впадает с механическим углом am. Взаимо­зависимость этих двух углов показывает угол aei=pam. Чтобы в обмотках наводилось одинаковое напряжение, ветви обмотки должны быть смещены относительно друг друга на угол aei = 120° или 2τp / 3, а структура и количество катушек должны быть одина­ковыми. На каждую ветвь приходится одна треть межполюсного расстояния.

 

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *