Сцепление шины с дорогой

Сцепление шины с дорогой

Сцепление шины с дорогой оказывает большое влияние на процессы движения и управляемости автомобиля. Автомобиль движется благодаря силе трения покоя в области контакта шины с дорожным полотном. Чем сильнее сцепление, тем лучше машина ведет себя на поворотах.

 

Коэффициент сцепления шин с дорогой

 

Коэффициент сцепления, называемый также коэффициентом трения покоя в зоне контакта шины с дорогой, определяется скоростью движения автомобиля, состоянием шин и состоянием поверхности дороги (см. табл.7 «Коэффициенты трения покоя для пневматических шин на различных поверхностях дороги» ). Приведенные в таблице данные применимы для асфальтобетонных и гудронированных щебеночных покрытий в хорошем состоянии. Коэффициент трения скольжения (при заблокированных колесах) обычно ниже, чем коэффициент сцепления.

Коэффициенты трения покоя для пневматических шин на различных поверхностях дороги

  1. Износ до глубины протектора ⩾ 1,6 мм

Специальные резиновые составы, исполь­зуемые в шинах для гоночных автомобилей, позволяют обеспечить коэффициент сцепле­ния вплоть до 1,8.

Аквапланирование

 

АквапланированиеАквапланирование сильно влияет на контакт шины с дорогой. Это такое состояние, при котором пленка воды разделяет шину и поверхность дороги (рис.5). Оно происходит, когда давление клина воды, не вытесненной из зоны контакта шины с дорогой, поднимает шину над дорогой. Склонность к аквапланированию зависит от толщины водяной пленки на дорожной поверхности, скорости движения автомобиля, формы рисунка протектора, его износа и давления, оказываемого шиной на дорогу. Широкопрофильные шины более подвержены аквапланированию. Аквапланирующий автомобиль не может передавать на поверхность дороги силы, требуемые для управления и торможения, что может стать причиной заноса.

Ускорение и торможение

 

Автомобиль может ускоряться (разгоняться) или замедляться (затормаживаться) с постоян­ной интенсивностью, когда величина а остается неизменной. Для условий, когда начальная или конечная скорость равны нулю, используются уравнения, приведенные в табл.8.

Ускорение и торможение

Максимально допустимые ускорения и замедления

Когда тяговые или тормозные силы на колесах автомобиля не превышают силы сцепления шины с дорогой (сцепление еще существует), зависи­мости между углом продольного уклона дороги а, коэффициентом сцепления и максималь­ным ускорением или замедлением имеют вид, приведенный в табл.9 «Ускорение и замедление» и 10 «Достижимое ускорение». Реальные значения рассматриваемых параметров всегда оказыва­ются меньше, так как не все шины автомобиля одновременно обеспечивают максимальное сцепление с дорогой при каждом ускорении (за­медлении). Электронные системы ABSTCS, ESP обеспечивают поддержание величины тягового усилия вблизи максимального коэффициента сцепления.

Ускорение и замедление

При расчетах ускорения и замедления применя­ется коэффициент к-отношение нагрузки, при­ходящейся на ведущие или затормаживаемые колеса, к общей массе автомобиля. Когда на все колеса действует сила тяги или тормозная сила, к = 1. При распределении нагрузки 50% к = 0,5.

Например, к = 0,5; g = 10 м/с2;

                       μr=0,6; р = 15%;

аmах= 10 • (0,5 • 0,6 ± 0,15) м/с

При торможении автомобиля на подъеме (+):   аmах = 4,5 м/с2,

При торможении на уклоне (-):                              аmах = 1,5 м/с2.



Работа и мощность

Мощность, требуемая для получения заданного ускорения (замедления), изменяется в соответствии с изменением скорости движения авто­мобиля (см. табл. 11). Мощность, необходимая для движения с ускорением, равна:

Pa = P η — Pw, где

-выходная мощность двигателя

η — КП.Д.

Pw — мощность, расходуемая на движение.

работа и мощность

В следующей статье я расскажу о циклах подачи заряда смеси в цилиндр.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *