Системы управления бензиновым двигателем

Системы управления бензиновым двигателем

Системы управления бензиновым двигателем обеспечи­вают передачу на двигатель команд, отдаваемых водителем. Она управляет двигателем таким образом, чтобы двигатель обеспечивал требуемый уровень крутящего момента при минимальных воз­можных расходе топлива и токсичности от­работавших газов.

Описание системы управления бензиновым двигателем

 

Выходная мощность двигателя опреде­ляется крутящим моментом, передаваемым сцеплению и частотой вращения коленчатого вала. Крутящий момент на сцеплении — это момент, производимый за счет сгорания то­плива минус момент трения (потери на трение в двигателе), момент потерь на газообмен и момент, необходимый для привода вспомо­гательных агрегатов (см. рис.1 «Распределение крутящего момента в силовой передаче»). Крутящий момент на ведущих колесах равен моменту на входе сцепления за вычетом потерь в сце­плении и трансмиссии. Этому результирую­щему крутящему моменту противодействуют такие силы, как сопротивление качению шин и аэродинамическое сопротивление. В зави­симости от команды водителя, между этими силами сопротивления и крутящим момен­том может иметь место состояние либо рав­новесия, либо дисбаланса. В случае равно­весия автомобиль движется с постоянной скоростью. В противном случае имеет место ускорение или замедление.

Распределение крутящего момента в силовой передаче

Крутящий момент, производимый двигате­лем, определяется в основном следующими переменными:

  • массой воздуха, доступного для сжигания топлива после закрытия клапанов;
  • массой топлива в цилиндре;
  • моментом зажигания.

В меньшей степени оказывают влияние на крутящий момент также состав топливно­воздушной смеси (количество остаточных отработавших газов) или процессы сгорания топлива.

Основной функцией системы управления двигателем является координация работы различных подсистем с целью регулирования крутящего момента, производимого двигателем, с соблюдением требований к ограничению токсичности отработавших га­зов, расходу топлива, выходной мощности и уровню комфорта и безопасности. Система управления двигателем также выполняет диагностику различных подсистем.

Обзор системы управления бензиновым двигателем

 

Электронная система управления бензиновым двигателем

Системы управления Motronic фирмы Bosch предназначены для управления двигателем в режимах замкнутого или разомкнутого регули­рования. Система Motronic (рис.2 » Компоненты, используемые для управления двигателем с искровым зажиганием в режимах разомкнутого или замкнутого регулирования») включает все датчики, необходимые для измерения значений параметров двигателя и автомобиля в целом, и исполнительные устройства, осуществляющие требуемое регулирование. Блок управления использует данные, поступающие с датчиков для определения состояния автомобиля и двигателя. Этот процесс выполняется с очень высокой частотой (с периодом в несколько миллисекунд для обеспечения регулирования в режиме реального времени). Во входных цепях происходит подавление помех и преобразо­вание сигналов в электрическое напряжение с использованием единой унифицированной шкалы. Аналого-цифровой преобразователь затем преобразует отфильтрованные сигналы в цифровую форму. Другие сигналы принима­ются через цифровые интерфейсы (например, шины CAN, FlexRay) или через интерфейсы широтно-импульсной модуляции (ШИМ).

 Компоненты, используемые для управления двигателем с искровым зажиганием в режимах разомкнутого или замкнутого регулирования

Основным устройством блока управления двигателя является микропроцессор с про­граммной памятью (например, флэш-ППЗУ), в которой хранятся все алгоритмы управления, т.е. алгоритмы математических вычислений, выполняемых в соответствии со специальными программами, и данные (параметры, харак­теристики, карты программ). Входные пере­менные, полученные в результате обработки сигналов датчиков, оказывают влияние на алго­ритмы вычислений и, следовательно, на выход­ные сигналы, поступающие на исполнительные устройства. Исходя из этих входных сигналов, микропроцессор определяет требуемые реак­ции на команды водителя и вычисляет, напри­мер, необходимый крутящий момент, величину заряда топлива, поступающего в цилиндры, момент зажигания и подает соответствующие выходные сигналы на исполнительные устрой­ства (например, системы контроля выделения паров топлива, турбокомпрессор и систему по­дачи дополнительного воздуха).

Сигналы низкого уровня, выходящие из микропроцессора, посредством задающего каскада усилителя мощности преобразуются в сигналы тех мощностей, которые требуются различным исполнительным устройствам.

Еще одной важной функцией системы Motronic является мониторинг работоспособ­ности всех систем с использованием системы бортовой диагностики (OBD). В целях выполне­ния дополнительных требований, предъявляе­мых к системе Motronic нормативными поло­жениями, примерно половины вычислительной мощности системы Motronic расходуется на выполнение задач, связанных с диагностикой.

Функции системы управления бензиновым двигателем

 

Система управления двигателем, кроме основ­ных функций регулирования подачи топлива, смесеобразования и зажигания, выполняет большое количество вторичных функций. Для большей ясности система подразделяется на несколько подсистем. Полная структура си­стемы Motronic показана на рис. 3.

структура си­стемы Motronic

Система определения требуемого крутящего момента (TD)

Водитель выдает прямую команду управления посредством изменения положения педали ак­селератора. Положение педали акселератора преобразуется в значение уставки для системы определения требуемого крутящего момента.

Кроме прямого ввода команды водитель также может отдавать команды косвенным образом, используя систему круиз-контроля. Требуемый крутящий момент вычисляется, исходя из текущих условий движения.

Если педаль акселератора не нажата, система вычисляет крутящий момент, необходимый для поддержания оборотов холостого хода.

Функция демпфирования, электрическая система (стартер, генератор, аккумуляторная батарея) и другие электрические потребители, такие как система кондиционирования воз­духа, предъявляют дополнительные требова­ния в отношении крутящего момента.



Система управления величиной крутящего момента (TS)

Переменное значение требуемого крутящего момента, определенное системой TD, потреб­ности трансмиссии, потребности динамики дви­жения и прочие потребности двигателя (напри­мер, нагрев каталитического нейтрализатора) координируются в подсистеме управления ве­личиной крутящего момента. Результатом яв­ляется определение общего требуемого крутя­щего момента двигателя внутреннего сгорания.

Исходя из значения общего крутящего момента, генерируются заданные значения объема заряда топлива, впрыска топлива и момента зажигания.

Объем заряда вводится как относительная масса воздуха. Относительная масса воз­духа (стандартизованная для всех классов двигателей) представляет собой отношение фактической массы воздуха в цилиндре к максимально возможной массе воздуха при данной частоте вращения коленчатого вала.

Заданное значение момента зажигания описывается углом опережения зажигания.

Снижение крутящего момента может про­изводиться посредством пропуска впрысков топлива (например, в соответствии с требо­ваниями системы контроля тягового усилия). С этой целью определяется количество про­пусков впрыска.

В системах с прямым впрыском топлива можно задать режимы работы на обедненной смеси (например, с послойным распределе­нием заряда топлива в камере сгорания). В этих режимах работы также можно задать значение крутящего момента двигателя по­средством ввода заданного значения коэф­фициента избытка воздуха λ.

Исходя из значений сигналов различных датчиков, физические модели генерируют требуемое фактическое значение крутящего момента на сцеплении. Это значение факти­ческого крутящего момента используется для контроля системы Motronic, а также требу­ется для других систем, таких как системы управления трансмиссией.

Система управления воздухоподачей (AS)

Относительное значение массы воздуха, вве­денное из подсистемы управления величиной крутящего момента, преобразуется в конкрет­ное количество, требуемое для исполнитель­ных устройств, используемых для регулирова­ния количества подаваемой в цилиндры смеси.

Основным исполнительным устройством яв­ляется дроссельная заслонка. Для вычисления угла открытия дроссельной заслонки, исходя из заданного значения массы воздуха, использу­ются модели. В свою очередь, исходя из значе­ния угла открытия, осуществляется управление приводом дроссельной заслонки с использова­нием широтно-импульсной модуляции.

Имеются подсистемы, в которых основным методом регулирования является активация впускных и выпускных клапанов. В таких системах Дроссельная заслонка обычно остается постоянно открытой. Только в особых случаях (например, в аварийном режиме) дроссельная заслонка ис­пользуется в качестве регулятора заряда смеси.

В случае двигателей с турбонаддувом также учитывается активация перепускной заслонки нагнетателя, приводимого в действие отработавшими газами, или управление нагнетателем с механическим приводом.

Еще одним видом исполнительных устройств являются системы регулирования положения распределительных валов и клапаны системы рециркуляции отработавших газов.

Кроме того, определяется фактическая текущая величина заряда смеси, подаваемого в цилиндры двигателя внутреннего сгорания. Для этой цели в качестве основных переменных используются сигналы датчиков темпе­ратуры и давления во впускном трубопроводе.

Система топливной системы (FS)

Функцией топливной системы является подача топлива из топливного бака в топливную магистраль в требуемом количестве и под предписанным давлением.

Используя текущее фактическое значение заряда смеси, давление топлива в топливной магистрали и впускном трубопроводе, и про­должительность открытия форсунок вычис­ляются, исходя из заданного значения λ.

В целях оптимизации состава топливно­воздушной смеси топливные форсунки активиру­ются синхронно с углом поворота коленчатого вала.

Долгосрочная адаптация фактического значения λ обеспечивает повышение точно­сти дозирования топлива.

Система зажигания (IS)

Результирующий момент (угол) опережения зажигания вычисляется, исходя из заданного значения входного сигнала зажигания, усло­вий работы двигателя и внешних воздействий (например, системы контроля детонации). Таким образом, искра генерируется на элек­тродах свечи зажигания в требуемый момент.

Угол опережения зажигания устанавлива­ется таким образом, чтобы двигатель рабо­тал с оптимальным расходом топлива. Система отступает от этого принципа только в некоторых особых ситуациях (например, при нагреве каталитического нейтрализатора или быстром снижении крутящего момента во время переключения передач).

Система предотвращения детонации непре­рывно контролирует процесс сгорания топлива в цилиндрах. Она обеспечивает работу двига­теля с оптимальным расходом топлива, вблизи порога возникновения детонации. В то же время система позволяет избежать поврежде­ний, обычно вызываемых детонацией. Система предупреждения детонации подлежит непре­рывному мониторингу с тем, чтобы в случае неисправности момент опережения зажигания мог быть скорректирован надлежащим обра­зом и установлен на достаточном расстоянии от порога возникновения детонации.



Система выпуска отработавших газов (ES)

В этой системе выполняется вычисление воздействий в замкнутой или разомкнутой си­стемах регулирования, необходимых для обе­спечения оптимальной работы трехкомпонент­ного каталитического нейтрализатора. Состав топливно-воздушной смеси должен регулиро­ваться в узком диапазоне, вблизи стехиометри­ческого соотношения воздух/топливо.

Подсистема также осуществляет монито­ринг каталитического нейтрализатора. В ка­честве основы для этого мониторинга служат сигналы датчиков системы выпуска отработав­ших газов (например, кислородного датчика).

Функция защиты компонентов предотвращает тепловую перегрузку системы выпуска отрабо­тавших газов. Фактические значения температур в системе выпуска отработавших газов, требуе­мые для этой цели, обычно моделируются.

В режиме работы на обедненной смеси с послойным распределением заряда топлива (в случае бензинового двигателя с прямым впрыском топлива) также регулируется состав топливно-воздушной смеси с целью обеспе­чения оптимальной работы каталитического нейтрализатора NОх аккумуляторного типа.

Cистема координации режимов работы двигателя (СЕ)

В случае бензинового двигателя с прямым впры­ском топлива система координирует и пере­ключает режимы работы двигателя (например, работа с гомогенной смесью или послойным распределением заряда топлива в камере сго­рания). Для определения требуемого режима работы необходимо координировать потребности различных функций на основе определенных приоритетов.

Система рабочих данных (OD)

Cистема рабочих данных оценивает зна­чения переменных величин, характеризую­щих состояние двигателя (например, частоты вращения коленчатого вала, температуры), выполняет цифровую обработку сигналов и проверку достоверности и делает результат доступным для других подсистем.

Адаптация допусков определения частоты вращения позволяет более точно регулиро­вать впрыск топлива и момент зажигания.

Определяется необходимость в пропусках зажигания в качестве функции защиты ката­литического нейтрализатора.

Система управления вспомогательными агрегатами (АС)

В систему управления двигателем часто встраиваются такие дополнительные функ­ции, как управление компрессором кондиционера воздуха, управление вентилятором или регулирование температуры двигателя. Эти функции координируются в подсистеме управления вспомогательными агрегатами.

Система обмена данными (СО)

Электрическая сеть автомобиля содержит большое количество других систем (напри­мер, система управления трансмиссией или электронная система курсовой устойчивости), а также систему Motronic. Обмен данными между системами осуществляется через стандартизо­ванные интерфейсы (например, по шине CAN), Кроме того, сигналы из системы управле­ния двигателем могут считываться диагно­стическими тестерами, при помощи которых также можно выполнять определенные на­стройки исполнительных устройств.

Система диагностики (DS)

Работоспособность системы Motronic непре­рывно контролируется системой диагностики. Функции этой системы диагностики включают проверку электрических цепей и проверку достоверности сигналов посред­ством сравнения сигналов датчиков с моделями. Неисправности сохраняются в памяти и надле­жащим образом обрабатываются (например, им присваиваются «временные отметки») В даль­нейшем все неисправности можно просмотреть при помощи диагностического тестера. Некоторые диагностические функции доступны только при определенных граничных условиях (например, в определенных диапазонах тем­пературы или нагрузки). Также существуют диагностические функции, которые должны выполняться в определенной последователь­ности. Координация этих последовательностей также осуществляется системой диагностики.

Система мониторинга (МО)

Мониторингу подлежат электронные си­стемы автомобиля. Основной функцией системы мониторинга является сравнение величин крутящего момента. При этом сравнивается величина допустимого крутящего момента, вычисляемая, исходя из величины задания, т.е. сигнала, выдаваемого водителем, с вели­чиной фактического крутящего момента, вы­числяемого, исходя из параметров двигателя На следующих уровнях мониторингу под­лежат ядро процессора и его периферийные устройства.

Система управления системой (SC)

Система осуществляет адаптацию системы Motronic. Перед вычислением отдельных функ­ций необходимо обеспечить наличие соответ­ствующих инфраструктур. Для оптимизации ис­пользования ресурсов («машинного времени») требуются различные алгоритмы вычислении (например, алгоритмы с синхронизацией по углу опережения зажигания или времени).

Определенные функции (например, функ­циональная диагностика выходных каскадов) выполняются перед пуском двигателя. Функ­ция последовательного управления также управляет операциями сброса и повторного запуска электронного блока управления (ECU).

Подсистема системной документации (SD)

В дополнение к функциям замкнутого или разомкнутого регулирования, выполняемым системой Motronic, для детального описания конкретного проекта требуются многочис­ленные документы. Эти документы включают описания аппаратуры и программного обе­спечения ECU, монтажные схемы, данные двигателя, описания компонентов и назначе­ния контактов разъемов.



Версии системы Motronic

Первоначально система Motronic включала электронные системы управления впрыском топлива и зажигания, объединенные в одном блоке управления. В дальнейшем, в связи с постоянным ужесточением требований к ограничению токсичности отработавших газов, снижению расхода топлива и уров­ням комфорта и безопасности система по­степенно приобретала все новые функции. Примерами этих дополнительных функций являются:

  • регулирование частоты вращения коленча­того вала на холостом ходу;
  • регулирование коэффициента избытка воздуха λ;
  • управление системой улавливания паров топлива;
  • управление системой рециркуляции отра­ботавших газов с целью снижения содер­жания NOx и расхода топлива;
  • управление системой подачи дополнитель­ного воздуха с целью снижения количества выбросов НС на стадиях пуска и прогрева Двигателя;
  • управление турбокомпрессором, приво­димым в действие отработавшими газами и впускным трубопроводом с изменяемой геометрией с целью улучшения рабочих характеристик двигателя;
  • регулирование положения распредели­тельного вала с целью снижения токсич­ности отработавших газов и улучшения Рабочих характеристик двигателя;
  • защита компонентов (например, контроль детонации, ограничение частоты вращения коленчатого вала, регулирование темпера­туры двигателя).

Система управления двигателем Motronic, со времени ее первого появления в 1979 году, подверглась существенным усовершенство­ваниям. В дополнение к электронным систе­мам многоточечного впрыска топлива были разработаны следующие, более простые и экономичные системы, позволяющие ис­пользовать систему Motronic на автомобилях среднего класса и компактных автомобилях:

  • система KE-Motronic на основе системы не­прерывного впрыска топлива KE-Jetronic;
  • система Mono-Motronic на основе системы одноточечного впрыска топлива Мопо- Jetronic.

В настоящее время на новых автомобилях устанавливаются только многоточечные си­стемы впрыска топлива:

  • система M-Motronic для управления за­жиганием и впрыском топлива в системах впрыска топлива во впускной трубопровод с обычными дроссельными заслонками. Однако, эта система Motronic становится все менее популярной;
  • система ME-Motronic с электронной систе­мой управления дроссельной заслонкой (ЕТС) для управления впрыском топлива, зажиганием и воздухозабором для систем впрыска топлива во впускной трубопровод (см. рис.4 «Система управления работой двигателя ME-Motronic»);

Система управления работой двигателя ME-Motronic

 

  • система DI-Motronic (прямого впрыска топлива) с дополнительными функциями замкнутого или разомкнутого регулирова­ния для систем прямого впрыска топлива высокого давления на бензиновых двига­телях и реализации различных режимов работы двигателей этого типа (рис.5 «Схема системы Dl-Motronic:»);

Схема системы Dl-Motronic:

  • двухтопливная система Bifuel-Motronic, предназначенная для управления ком­понентами, необходимыми для работы двигателя на бензине или природном газа (см. главу «Двигатели, работающие на при­родном газе»).

В следующей статье я расскажу о работе двигателя на сжиженном нефтяном газе.

 

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *