Роторный двигатель

Роторный двигатель

 

Роторный двигатель внутреннего сгорания, это тепловой двигатель, в котором главный подвижный рабочий элемент двигателя — ротор — совершает вращательное движение. Роторный двигатель также известен под на­званием двигателя Ванкеля в честь его изо­бретателя доктора Феликса Ванкеля. Роторный двигатель в его современном виде описан в стандарте DIN 6261. Вот о том, как устроен роторный двигатель, мы и поговорим в этой статье.

 

 

 

Первый прототип роторного двигателя был испытан 25 февраля 1958 года. В настоящее время единственным серийно выпускаемым автомобилем, оснащенным роторным двига­телем, является Мазда RX-8.

Конструкция и принцип действия роторного двигателя

 

Ротор двигателя имеет треугольную форму с выгнутыми наружу (выпуклыми) сторонами (рис. «Сравнение четырех тактов рабочего цикла роторного двигателя и двигателя с возвратно-поступательным движением поршней» ). Внутри охлаждаемого водой кожуха находится овальная или, точнее, эпитрохоидальной формы камера ротора. При враще­нии ротора три его вершины обкатываются по стенке корпуса, образуя три взаимно гермети­зированные камеры с изменяемым рабочим объемом (А, В, С), располагаемые через 120° по дуге окружности. Каждая из этих камер обеспе­чивает реализацию полного четырехтактного цикла сгорания при каждом полном обороте ротора; т.е. за один полный оборот треугольного ротора двигатель заканчивает четырехтактный процесс три раза, а эксцентриковый элемент осуществляет равное число оборотов.

Передаточное отношение зубчатого колеса с внутренними зубьями и ведущего зубчатого колеса составляет 3:2. Следовательно, ротор вращается со скоростью равной одной трети скорости вращения эксцентрикового вала.

 

Сравнение четырех тактов рабочего цикла роторного двигателя и двигателя с возвратно-поступательным движением поршней

 

Сравнение 4-тактных рабочих циклов роторного двигателя и двигателя с возвратно-поступательным движением поршней

 

По мере поворота эксцентрикового вала про­исходит увеличение объема (см. рис. а). Это соответствует движению поршня вниз в двигателе с возвратно-поступательным дви­жением поршней, т.е. такту впуска топливно­воздушной смеси.

По мере продолжения поворота ротора впуск­ной канал соответствующей камеры закрыва­ется (рис. Ь), и объем газа, находящегося в камере, сжимается. Для двигателя с возвратно-поступательным движением поршней это соот­ветствует перемещению поршня из НМТ в ВМТ при закрытых клапанах. Перетекание газа мимо трохоидального сужения облегчается за счет выемки в основании ротора (Ь, с).

Незадолго до того, как объем снова начи­нает увеличиваться, производится зажигание, и начинается процесс сгорания смеси (см. рис. с). Давление газов передается ротором на эксцентриковый вал, что вызывает вращение эксцентрикового вала и ротора. При этом объем камеры снова начинает увеличиваться (с, d). Это соответствует рабочему ходу или такту расширения на двигателе с возвратно-­поступательным движением поршня. Здесь эксцентриковый вал выполняет функцию шатунной шейки в двигателе с возвратно-­поступательным движением поршней.

Приблизительно в точке достижения мак­симального объема камеры ротор открывает выпускное отверстие, и начинается выпуск от­работавших газов (см. рис. d), что соответ­ствует такту выпуска в двигателе с возвратно­-поступательным движением поршней.

В двух других камерах, окружающих ротор, выполняется такая же последовательность со смещением на 120° относительно ротора. В результате этого процесса за один оборот ротора впуск смеси через впускной канал и выпуск отработавших газов через выпускной канал осуществляется три раза.

Эквивалентный рабочий объем роторного двигателя вычисляется в соответствии со следующим соотношением:

эквивалентный рабочий объем = количество роторов • объем камеры • 2

 

 

Направление движения ротора

 

Движение ротора по трохоидальной поверх­ности цилиндра направляется:

  • Направляющей шестерней, жестко закре­пленной на торцевом щите;
  • Внутренним зубчатым венцом ротора, ко­торый обкатывается вокруг направляющей шестерни;
  • Эксцентриковым валом, который передает крутящий момент на трансмиссию и, таким образом, эквивалентен коленчатому валу двигателя с возвратно-поступательным движением поршней.

 

Эксцентриковый вал установлен в подшипниках скольжения в торцевых щитах двигателя и концентрично вращается в направляющей шестерне. Ротор позиционируется на эксцентрике эксцентрикового вала при помощи подшипников сколь­жения. В многороторных двигателях на одном эксцентрике установлено несколько роторов.

Во время вращения ротор опирается с одной стороны на вращающийся эксцентриковый вал, а с другой стороны опора создается в ре­зультате обкатки зубчатым венцом направляю­щей шестерни. Благодаря такому двойному принудительному направлению ротор может вращаться только в пределах трохоидальной поверхности цилиндра таким образом, что его боковые края, скользя по внутренним стенкам цилиндра, образуют три рабочих камеры.

Ротор изготовлен из литой стали и имеет торцевые и радиальные уплотнительные пластины. Эти пластины изготовлены из литой стали и подвергнуты поверхностной электронно-лучевой обработке. Требуемое давление прижима уплотнительных пластин обеспечивается пластинчатыми пружинами.

В трохоидальной камере для смазки уплот­нений установлены маслоразбрызгивающие сопла, подача масла в которые осуществля­ется дозирующим масляным насосом. Это позволяет точно дозировать подачу масла и снизить расход масла приблизительно на 40 % по сравнению с ранними моделями ро­торных двигателей.

 

 

Газообмен в роторном двигателе

 

Роторный двигатель с боковыми впускными и выпускными каналамиВ отличие от двигателя с возвратно­-поступательным движением поршней, в кото­ром управление газообменом осуществляется клапанами, в роторном двигателе оно осу­ществляется отверстиями в роторе. Впускные и выпускные каналы, на предыдущих версиях двигателя расположенные радиально в трохоидальном корпусе ротора (периферийный впуск и выпуск), в последующих разработках были заменены впускными каналами в торцевых щитах. В последних разработках используются боковые впускные и выпускные каналы.(см. рис. «Роторный двигатель с боковыми впускными и выпускными каналами» ).

Единственным роторным двигателем, уста­навливаемым в настоящее время на серийно выпускаемых легковых автомобилях, явля­ется двухроторный двигатель. Он имеет три боковых впускных канала и два боковых вы­пускных канала для каждого ротора. Боковое расположение каналов газообмена позволяет осуществлять газообмен без перекрытия, что предотвращает перетекание всасываемой све­жей смеси со стороны впуска на сторону вы­пуска. Это дает значительное снижение содер­жания углеводородов в отработавших газах.

 

Система впуска роторного двигателя

 

Аналогично двигателю с возвратно­-поступательным движением поршней совре­менные роторные двигатели для легковых автомобилей имеют регулируемую систему впуска, позволяющую влиять на характери­стику крутящего момента двигателя. Каждый впускной канал имеет собственный порт на впускном трубопроводе. Это позволяет под­ключать один, два или три впускных канала, в зависимости от потребностей двигателя.(см. рис. «Впускные и выпускные каналы с различными настройками регулируемой системы впуска» ).

 

Впускные и выпускные каналы с различными настройками регулируемой системы впуска

 

Зажигание в роторном двигателе

 

Поскольку камеры сгорания роторных дви­гателей имеют вытянутую форму, что небла­гоприятно для зажигания, на современных роторных двигателях устанавливаются две независимые свечи зажигания, со сдвигом момента зажигания во времени. При этом за­паздывающая свеча находится впереди опе­режающей свечи в направлении вращения.

Впрыск топлива в роторном двигателе

 

Топливо подается в двигатель через топлив­ные форсунки с несколькими отверстиями, установленными в системе впуска, что обе­спечивает достаточное распыление топлива. В двигателе Renesis (Mazda), каждый ротор имеет три топливные форсунки с различным количеством отверстий. Каждая форсунка «обслуживает» один из трех каналов впуска.

Система охлаждения роторного двигателя

 

Роторный двигатель обычно имеет жидкост­ную систему охлаждения. Расположение ка­налов охлаждения в корпусе ротора адапти­ровано к неравномерной тепловой нагрузке, испытываемой рабочей камерой трохоидальной формы. На стороне впуска, испытываю­щей небольшую тепловую нагрузку, количе­ство каналов охлаждения меньше, чем на стороне выпуска, тепловая нагрузка которой значительно выше. Такое расположение кана­лов охлаждения предотвращает повреждение и деформацию камеры и роторов.

 



 

Характеристики роторного двигателя

 

Преимущества: полная уравновешенность масс; благоприятная кривая изменения кру­тящего момента; компактная конструкция; меньшее количество компонентов (отсутствует клапанный механизм); легкость в управлении.

Недостатки роторного двигателя

 

  • Неблагоприятная форма камеры сгорания с длинными путями распростране­ния пламени;
  • Повышенный расход топлива и масла;
  • Невозможность реализации дизельного цикла;
  • Высокое расположение выходного вала.

 

Из-за отсутствия возвратно-поступательно движущихся масс и ограничений на проход газа, скорость перемещения газового потока и частоту вращения вала двигателя можно значительно повысить.

Роторные двигатели могут быть полностью уравновешены. Единственным нерешенным вопросом является неравномерный крутя­щий момент, что характерно для всех ДВС. Улучшение постоянства потока мощности и других рабочих характеристик может быть достигнуто объединением нескольких рото­ров на одном валу. Кривую момента можно приблизить к характеристике дросселирован­ного двигателя или двигателя гоночного ав­томобиля, изменяя момент впуска и сечение впускных каналов.

В следующей статье я расскажу о системе охлаждения двигателя.

 

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *